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ABSTRACT

Here we develop a three dimensional (3D) dyadic recursive Green's

function with elements O suitable for determining the electric field
components (Ez, Er, Ey) and magnetic field components (Hgz, Hr, Hy)
anywhere within a circular, planar ( microstrip or stripline) circulator. All
of the components are present, although the Ez, Hy, and components
may still be dominant as long as the thickness h of the substrate is small.

SV
The recursive nature of G is a reflection of the inhomogencous region
being broken up into one inner disk containing a singularity and N annuli.

Gi(r.¢,2) s found for any arbitrary point (1, ¢, z) within the disk

region and within any i th annulus. Specification of Gy ,i=EorH,j
=H,s=12z v=2¢o0rz atthe circulator diameter r = R leads to the
determination of the circulator s-parameters . The ports have been separated
into discretized ports with elements ( subports) and continuous ports. It is

shown how G5 (T, 9,2) cnables s-parameters to be found for three and six
port ferrite circulators. Because of the z-variation present in the finite
thickness model, TEM, TM, and TE modal decompositions are not allowed
for the 3D analysis, and instead it is found that new coupled governing
equations describe the field behavior in the circulator. The theory is readily
adaptable to constructing a computer code for numerical evaluation of finite
thickness devices. Also, symmetric port disposition and metallic losses are
covered.

INTRODUCTION

As discussed in a previous paper [1], the ferrite research and
development community, which has focused on producing ferrite based
circulators, has been in need of simple but accurate ways of calculating
performance when the device is subject to radial variation of the bias field
Hypp, ferrite material magnetization 4nMj, and demagnetization factor Ng.
The two dimensional recursive Green's function employed in [1] allowed the
inhomogeneous boundary valued problem, subject to inhomogeneities in
parameters, to be solved in an orderly and systematic fashion. It utilized an
integral-discretization mapping operator and finally resulted in scattering
parameters being expressed for a three port circulator with unsymmetrically
disposed ports. The theory requires the circulator region to be broken up
into two different zones. The inner zone is made up of a disk containing the
origin point and the outer zone is segmented or divided up into annuli, each
one of unequal radial extent, layered as in an onion. Numerical calculations,
based upon a FORTRAN computer code developed from the theory, show
that a few seconds are required per frequency point to obtain results including
s-parameters.

In contrast, two and three dimensional finite element ( FE) and
finite difference ( FD) analyses are hundreds to thousands of times slower.
Because of the success of the 2D approach, we develop here a completely
new dyadic Green's function theory to describe the fields within a circulator
of finite thickness. Integral-discretization operators will be employed, and
spectral summation over the doubly infinite domain of azimuthal integers n
will be maintained. However, because of the 3D nature of the construction,
neglect of some of the field components won't be necessary any more.
Although most circulators are built to be thin in terms of electrical
wavelengths compared to their planar extent, assumptions requiring the
thickness h to approach zero to apply a 2D model will no longer be
required. Thus the actual effects of a finite thickness substrate on the
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circulator behavior will now be possible. The one characteristic radial
propagation constant found in the 2D model now will break up into two
radial propagation constants, both affected by the allowed normal z-directed
propagation constant k,. The problem is no longer reducible to or described
by a single governing equation, but rather by two coupled governing
equations which always stitch the field components together. Thus, TEM,
TM, and TE modes are not allowed in relation to any coordinates and no
coordinate transformations will ever allow such modes to be found. Because
of the impossibility of finding such simple modes, a much more involved
approach to solving the 3D problem must be enlisted. Eventually, we show
how these new dyadic Green's functions may be utilized to determine
circulator s-parameters.

3D THEORY

The theory, briefly, starts with coupled radial Helmholtz equations
stated in streamlined form as ( see Figure 1 for perspective sketch of the
circulator, with thickness in the z - direction exaggerated)

V%EZ + aE;, + bH; = 0 (1a)
V%HZ + ¢cH, + dE, = 0 (1b)
where
a = k2 - K2 (2a)
= 'iﬂ)Mosz

(2b)

c = B2 k)
M (2¢)

d = iwek, &

M 2d)

These formulas are consistent with Van Trier's earlier work for simultancous
permittivity and permeability tensors, although of specific anisotropy
characteristic similar to that here resulting form a z - directed biasing
magnetic field [2].

By using a diagonalization procedure appropriate to the problem, a
final form of the transformed governing equation is obtained,

2. MO,
Vl F + F = 0
0\ 3)
This diagonalization procedure is in agreement with Kales' work on ferrite
wwaveguides [3], [4]. Thorough discussions of how this earlier work relates
to the present circulator theory is treated elsewhere [5]. The radial field
behavior is now described by the two components of the transformed field

ViF, + MF,
V%F'Z + 7\,2}—“'2

0 (4a)
0 (4b)
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These equations can be solved independently, just as one would solve a
single Helmholtz equation in cylindrical coordinates. Thus the approach
utilized for the two dimensional circulator problem [6] can be used to good
advantage here. Of course, the actual field component solutions in the z-
direction must be found by a proper lincar superposition given by the
reverse transformations for E, and H,. From these two properly
determined field component solutions, all of the other transverse field
components in the plane of the circulator can be also acquired by the
construction technique.

E, = F, + F, (52)

A - a Ay - ay
1b F, +

b F, (5b)

H, =

The transverse field component formulas, in terms of the
transformed fields and the radial eigenvalues, are

B, - o | om0 + SMOF | TMOF, | 0w + shidF,
b o br 1) b or br o0
(62)
- _ThadF + i0Uo + she dF; )\ OF, + 10U + sh1 dF,
br d¢ b or br d9¢ b or
(6b)
n, = kapol)-ph2 OF;  qho OF; , ikelitofr) - phi OF,  qhs OF,
b o  br 90 b o br 20
(72)
H, = eluot)-pha OFy | qha OF;  iki{uof)- phi OF, | gl 3F,
br 20 b or br a0 b or
(7b)

The field components can now be constructed in terms of the dyadic
Green's functions, when the circulator is considered driven by the external
ports. For example, the z-component of the electric field in the disk region
is

N My N .
En(r,0,2) =3 Y ¥ GEHO(r, o, z; R, ¢y, ZS)H¢C(R, oF, zs)Aq>;<1
s=1 g=1k=1
N, My —p
+ > Gmalr, ¢, 2 R, dv, 7s)JHedR, dv, 25 A0k
s=1 v=1
My

N
Y. GHdr. ¢. 7 R, o, 2JH{R, 0, 2Ja 05

Ny Nrfrp_u
+ Y Y Gmidr 6, 2 R, v, zJHdR, 6v, 25)Adk

s=1 v=1 ( 8)
Here, the first dyadic Green's function in the expansion is given by
g® - L Y Ky cos(ky0542) —L
EHO zZj+ 20j+ .
2% 120 ne. DABJ
2 1 1 2 _inoR i
X [ancl%leajo(r) - ancgeaJO(r)]c indkging

9
This dyadic Green's function properly superpositions the k; modal

dependence, and allows the correct coupling of the device to external port
fields.

The theory can treat any number of ports, discretizing them if
desired as done for the general 2D theory. Anyway, for the commonly
studied 3 - port case, at the circulator - port interfaces,

= =~z = =z
Ea= Gd‘x(¢a,¢a)H¢a + de(q)a,q)a)Hza + Geh(q)a1¢b)H¢b + Geh(¢a,¢b)sz
= =~z
+ Ger(da,9)Hge + Gen(Pa,0c)Hze (10a)
o0 ~z ~ =z
Ep = Gen{(¢.02)Hoa + Gen(Go,02)Hza + Gen(Po,96)Heb + Gen(dp,06)Hay
~b

= ~*
+ Gen(Pb,0c)Hpe + Gen(9b,9c)Heo (10b)
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= fav 4 =t ~z
Ec = Gen(dc,92)Hyps + Ger(§c:da)Hza + Gen(de.06)Hob + Gen(de,do)Hzs
=~ ~Zz
+ Genlde.9c)Hoo + Gen(Pe.de)Hae (10c)
a4 =z ~ ~z
Hu = th(q)a,q)a)HQa ‘;?M(¢a,¢a)Hza + th(¢a,¢b)H¢b + th(¢a,¢b)sz
~
+ th(¢a»¢c)H¢c + th(q)a:q)c)Hzc (1 13)
~9 ~Z =1 B~
Hab = Gun($o,92)Hoa ‘;ﬁth(d)b,q)a)Hza + th(q)b,q)b)Hq»b + Grn((o,00)Hz
=~z
+ G ¢o,90)Hpe + Grn(o,0c)Hao (11b)
=~ =z = I~
Hze = Gun(§e,02)Hoa ;@ Girn(0c.9a)Haa + Grin(Qe.06)Hpb + Grn(de,$)Hab
=~z
+ Gun(de,9c)Hoe + Grn(de,9c)Hae (11c)

S - PARAMETERS

These relationships can be used to find the s-parameters of the 3D
modelled device. The solutions for the H-field components are

Tob Te
- 1
Hyo = Dsy| © (T3 + G) T
TS, (T + L)
(12a)
(Teaa + Ca) 2 T
By = 5] T 0 T
TS 0 (T +¢)
(12b)
(Teaa + Ca) Tob 2
Hye = 1)‘1—3p e, (Tg + L) 0
T cb 0
(12¢)
where the H - field system determinant is
(T + &) TS Ts
Dp = | T (Tg+0) T
Tea Tey ( ce t CC)
(13)

A typical group of T elements may look like

Th = -Gaa)My, + Gy (ba)My, - G‘i"h((clazlv)lac
a
Th, = - Giy(ab)Ma, + Gl (bbYMay - G (ch)Mee
(14b)
Th = - Gh@c)Ma + Gl(bOMay - G, (co)Mye
(14c)
where
_— ,Gﬁhaab)-l Gfn(be)
Giincb) Giplee) - 1 (152)
My - l Gip@b)  Giy(ac)
Ginleb) Gipleo) -1 (15b)
M, - tn(@ab)  GEy(ac)
hn(bb) - 1 GRyp(be) (15¢)




Once the perimeter fields have been determined, it is a simple
matter to apply the prescription employed in the 2D model, here to the 3D
s - parameter calculation. The three s - parameters are then

si= 1 - Lo, (162)
$21 = - CbHcpb (16b)
s31 = - CcHge (16¢c)

The counter - clockwise labelling scheme of the ports is shown in Fig. 2.

THREE - PORT SYMMETRIC 2D
CIRCULATORS

There are a tremendous amount of simplifications which result by
constraining the circulator to a symmetric disposition of the port locations.
We use the 2D theory as illustrative, leaving the details of the 3D
exposition for another place.

a = aaHa + GapHp + GucHe (17a)
Ey, = GpaHs + GupHp + GueHe (17b)
Ec = GeaHa + GopHp + GecHe (17¢)

In the general case for the 2D model, (17) holds for a three - port device.
Examination of the EH dyadic Green's function element for n = N, the last
ring, allows full advantage to be taken of the inherent three-fold symmetry.

Grin(R. 0: R, 60) = iln— Y ke indk gind
n=~o

(18)

Let us make this expression more transparent by defining the source
9
o and the field location tobe ¢ = ¢4 .

azimuthal location to be 9
Furthermore, abbreviate

GEN(R, ¢; R, 69 | "
W=t (19)

On the right-hand-side of (18), collect the azimuthal exponents into one
factor, while noting that the radial variation, here with r = R, is stored in

the pre-factor ¥aN = YaN(®R) . Then (18) becomes

G( ¢5, Oy

G0 0 =5 3 ¥ eilo-o)
n= - (20)
Right away, we notice from (20) that the Green's function only depends
upon the difference between the source and field locations. That is,
G( o1 ¢ = G(¢i - ¢ 1)
This does not mean, however, that G(¢3, ¢4) = G(¢3, ¢i). Infact,
because the material is a nonreciprocating medium, we know this can't hold.
Certainly, circulating action would cease if this type of Green's function
dyadic element symmetry existed. Another clue that this type of symmetry
doesn't exist is seen by re-examining (20) again. Let us find the
G(¢4, ¢i) dyadic element from (20) by switching azimuthal angles.

G(00) = 5= X ¥k enlo-o)
n=-e (22)

Now define a new summation index as n'= - n, Substituting this into (6)

yields

G(o50) =5 ¥ Paneila-o
o= (23)
But because notation is arbitrary, change the n' into n for the index, and
recognize that the order of summation doesn't matter, especially as the same
integers are used as in the oniginal G(¢; , ¢ ) Green's function.

G(¢;, ¢) =L Yo ein(o - 0)
( ¢J ¢1) 2 z YunN
n= 24)
C ymparing this to the expression for G(¢; , ¢4) in (20) enables us 1.
see that except for the pre-factor, the dyadic Green's function formulas are

- oo
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identical. It is this pre-factor, nevertheless, which is all important here and
maintains the device non-reciprocity! YN is not equal to Yal ,or

YN # YN 25)

Because of the all important relationship in (25),
G( 0 ) = G(01 0p

is true and we are assured of our non-reciprocity.

However, property (21) and the symmetric angular distribution of

the port locations will reduce the number of actual Green's function
elements required to be calculated. Note that the notation

Gy = G(¢u9p Q7
is used in (17). Thus, by evaluvating the Green's dyadic for ¢; = ¢, the
self - terms, it is found that

G(0u0) =5 X W

n=

(26)

-o0o

(28)
All self-term Green's function dyadic elements are equal, and we denote this
fact by assigning

Gs = # Z _n?\l
A= -o0 (29)
Equation (28) obviously also means that
G( ¢, 00 G( o5, ¢ (30)

For the off - diagonal Green's function dyadic elements, it is found
that the number of unique terms is less than the total number of off -
diagonal elements. Denote the total number of radially located ports as
NTrp. Then the total number of diagonal elements is NT, diag = NTrp
, but the number of unique diagonal elements is one by the arguments in the
previous paragraph. The total number of off - diagonal elements is NT, off
(NTIp )2 * NTrp . but the number of unique diagonal elements

- diag
is considerably less, Nunique, off - diag

ports and Nypique, off - diag Tp - 1 for an odd number of ports.
A device with three ports would have Ny, ¢ - d =2 < NT, off - diag =6-
The savings for larger NTyp rapidly goes up because of the quadratic term.

The determinant of the system to solve for the azimuthal Hg -
fields also displays all the individual Green's function dyadic elements.
(How the G entries of the 2D theory go over into T entries of the 3D
theory is discussed in [5].)

Yen
Ny for an even number of

(Gaa + Ca) Gab Gac
D, = Gba (G + &) Gee
Gea Geoo  (Gec + &) (31)
Let us define
Adss = 05 - 05 (32)

Recognizing that a right-handed system with (r, ¢ ) or (x, y) in the plane
of the paper requires counter - ¢clockwise labeled ports (i.e.,i=a,b,¢ or i
=1, 2, 3) to have progressively more positive valued azimuthal angles, if
the input port angle is set to O radians, then

0a 0 ; ¢p 2r/3 ; ¢c = 4n/3 (33)

In order to see that there are only two unigue dyadic Green's function
elements requiring calculation, it is best to begin to evaluate the particular
off - diagonal terms in (31). It will become apparent what the trend is once
this examination process is started. By (20), (27), and (32),

Gy = GjAdy = 7175 >, Wk einddy

n=-c (34)
Moving down the first column, excluding the diagonal, the ij = 21 or ba
clement is

s

Goa = Gua(Abo) = 5 2 Fiv eindéw
n=-- (35)
uvoking (33),
Adpa = 0p - ¢a = 21/3 (36)



and inserting this into (35) yields one of the unique dyadic Green's function
clements.

Z Y& ezinm/3
n=-ee 3N
with Gva = Go (38)
Moving down to the next element in the system matrix, the 31 or ca
element, we find the angular argument
Abca = ¢c ~ $a = 47/3 = 21 - 2m/3 39)
and put it into

G,

2 Y& cindda

Gea = Gca(Aq)ca)
n=-e 40)
obtaining the other unique dyadic Green's function element.
G =-L V2%, - 2inm/3
- o Z 'an.N €
n=-e “4n
with Gea = G (42)

The dyadic Green's function elements in the first row in (31), are
found from those already determined by noting that the azimuthal angle
differences have their signs reversed. Finally the cb ( and bc) element is
determined once it is noted that
Adch = ¢c - Op = 4%®/3 - 2m/3 2m/3 43)

By (34), this implies that the cb element is G. . Therefore, in summary
we have found that

Gaa = Gbb = Gee = Gg (44a)
Gca = Gbc = Gab = G. (44b)
Gba = Geb = Gac = G+ (44c)
Placing (32) into (19) gives
G, + &) . G,
Dy = Dy = G. (Gs + Cb) G.
G. G+ (G + Cc) (45)

Now the three aumulhal H - fields can be simplified as follows:

H, = [(be + CbXGcc + Cc) - Gchch
= DLT(GS + GG, + &) - GGl
P 463)
Hb = DL[Gba(Gcc + (;c) - Gchca]
- -Zlole, + 1) - (6.7]
p (46b)
Hc = DL[GbaGcb - (be + Cb)Gca]
P
= glor - (o« b
(46¢)
The s-parameters are found in the usual manner, from (16) above.
o
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METALLIC WALL LOSSES IN 3D MODEL

Rigorous incorporation of metal ground plane and microstrip
losses, something missing in the 2D approach, by the use of surface
impedances at the two conductor surfaces in question, can readily be
accomplished. By restricting the mixed recursive dyadic Green's function
/mode - matching approach in [S] to the limiting case of one horizontal
layer, thereby reducing the RGF/MM to a RGF, but retaining the added
constraint imposed to describe the impedance boundary conditions

Z8sm = EF (47
found there, where m = layer index, which here would be set to m = 1B or
1T, corresponding to the bottom or top part of the layer ( here just a single
region), losses may be added. Z& in [5) is used as a scalar, but may be
upgraded to a dyadic if desired.

CONCLUSIONS

It is expected that the derived dyadic Green's function will be very
useful for the calculation of the 3D circulator fields and s-parameters because
of the previously found rapid convergence properties of the Bessel function
expressions previously used for the 2D circulator and similarly employed

here.
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