
TUIE-4

3D DYADIC GREEN’S FUNCTION FOR IRADIALLY
INHOMOGENEOUS CIRCULAR FERRITE

Code

Clifford M, Krowne

6850,3, Microwave Technology Branch, Electronics

CIRCULATOR

Science & Technology

Division, Naval Research Laboratory, Washington, DC 20375-5347

ABSTRACT

Here we develoD a three dimensional [3D) dvadlc recursive Green’s. .
function with elements G; suitable for determining the electric field
components (EZ, Er, E@ and magnetic field components (Hz, Hr. H@

anywhere within a circular, planar ( microsrrip or stripline) circulator. All
of the components are present, atthough the Ez, Hr, and ~ components

may still be dominant as long as the dtickness h of the substrate is smrdl.

The recursive nature of G~; is a reflection of the inhomogeneous region
being broken up into one inner disk containing a singularity and N annuli,

G:;( r, $! z) is found for any arbitrary point ( r, $, z) within the disk

region and within any i dr annuhrs, Specification of G; , i= Eor H,j
= H, s = z, v = ~ or z, at the circulator diameter r = R leads to the
determination of the circulator s-parameters. The ports have been sepsratcd
into discretized ports with elements ( subports) and continuous ports. It is

shown how G~(’~ $,’) enables s-parameters to he found for three and six
port ferrite circulators. Because of the z-variation present in the finite
thickness model, TEM, TM, and TE modal decompositions are not atlowed
for the 3D analysis, and instead it is found that new coupled governing
equations describe the field behavior in the circulator. The theory is readily
a&ptable to constructing a computer code for numerical evaluation of finite
thickness devices. Also, symmetric port disposition and metallic losses are
coverwi.

INTRODUCTION

As discussed in a previous paper [1], the ferrite research and
development community, which has focused on producing ferrite based
circulators, has been in need of simpte but accurate ways of calculating
performance when the device is subject to radial variation of the bias field

HEW. ferrite material magnetization 4rcM ,, and demagnetization factor Nd.

The two dimensional recursive Green’s function employed in [1] aflowed tfre
inhomogeneous boundary valued problem, subject to inhomogeneities in

parameters, to be solved in an orderly and systematic fashion. It utilized an
integraf-discretization mapping operator and finally resulted in scattering

parameters being expressed for a three port circulator with unsymmeuically
disposed porfa. The theory requires the circulator region to be broken up
into two different zones. The inner zone is made up of a disk containing the
origin point and the outer zone is segmented or divided up into annuli, each
one of unequsd radird extent, layered as in an onion. Numerical calculations,
based npon a FORTRAN computer code developed from the theory, show
that a few seconds are required per frequency point to obtain results includhrg
s-parameters.

In contrast, two and three dimensional finite element ( FE) and
finite difference ( FD) analyses are hundreds to thousands of times slower.
Becanse of the success of the 2D approach, we develop here a completely
new dyadic Green’s function theory to describe the fields within a circulator
of finite thickness. Integral-discretization operators will be employed, and
spectrrd summation over the doubly infinite domain of azimuthal integers n
wiff be maintained. However, because of the 3D nature of the construction,
neglect of some of the field components won’t be necessary any more.
Although most circulators are built to be thin in terms of electrical
wavelengths compared to their planar extent, assumptions requiring the
thickness h to approach zero to apply a 2D model will no longer be
required. Thus the actual effects of a finite thickness substrate on the

circulator behavior will now be possible. The one characteristic radial
uro~agation constant found in the 2D model now will break up into two
;ad~af propagation constants, both affected by the allowed normaf z-directed
propagation constant kn The problem is no longer reducible to or described

by a single governing eqnation, but rather by two coupled governing
equations which always stitch the field components together. Thus, TEM,
TM, and ‘IX modes are not allowed in relation to any coordinates and no
coordinate transformations will ever rdlow such modes to be found. Beeanse
of the impossibility of finding such simple modes, a much more involved
approach to solving the 3D problem must be enlisted. Eventurdly, we show
how these new dyadic Green’s functions may be utilized to determine
circulator s-parameters.

31) THEORY

The dreory, briefly, skwts with coupled radiaf Helmholtz eqnations
stated in streamlined form as ( see Figure 1 for perspective sketch of the
circntator, with thickness in the z - dircctron exaggerated)

V&z + ,aEz + bH. = O (la)

V~z+cHz+dEz=O (lb)

where

a=k~-k2 (2a)

b = - iqtok, ~
(2b)

c = K(]k2 - k;)
P’ (2C)

d = imekz ~
(2d)

These formulas are consistent with Van Trier’s earlier work for simultaneous
permittivity and permeability tensors, although of specific anisotropy
characteristic similar to that here resulting form a z - directed biasing
magnetic field [2].

By using a diagonalization procedure appropriate to the problem, a
finrd form of the transformed governing equation is obtained,

[1Xl o
V: F’ + F’=0

o L2 (3)

This diagonalization procedure is in agreement with Kales’ work on ferrtte
wwaveguides [3], [4]. Thorough discussions of how dus eartier work relates
to the present circulator theory is treated elsewhere [5]. The radial field
behavior is now described by the two components of the transformed field

V;F; + ?qF; = O (4a)

V:F; + ?QF; = o (4b)
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These equations can be solved independerttfy, just as one would solve a
single Helmholtz equation in cylindrical coordinates. Thus the approach
utilized for the two rfimensiomd circulator problem [6] can be used to good
advantage here. Of course, the actuaf field component solutions in the z-
direction must be found by a proper linear superposition given by the
reverse transformations for Ez and Hz. From these two properly
determined field componentsolutions, all of the other transversefield
componentsin the plane of the circulator can be also acquired by the
construction technique.

EZ=F; +F; (5a)

Al - aF; + *F; (5b)HZ=——
b

The transverse field component formulas, in terms of the
hansforrmxt fields and rbe radiaf eigenvrdues, are

The field components can now be constructed in terms if the dyadic
Green’s functions, when the circulator is considered driven by the external
ports. For example, the z-component of the electric field in the disk region
is

N, Nbp

+ ~~1,~, ~dr, ~, ‘i R ‘$.3@zc@, k Zs)A$k
(8)

Here, the first dyadic Green’s function in the expansion is given by
--

‘2to = * X X ‘zj+ c04kzoj+z)~~j
J=o ~=. m

,-
This dyadic Green’s functiou properly superpositions the kz modal

dependence, and SHOWSthe correct coupling of the device to external port
fields.

The theory can treat any number of ports, discretizing them if
desired as done for the general 2D theory. Anyway, for the commonly
studied 3- port case, at the circulator - port interfaces,

.-
+ GM(I$.,I$IJHo. + GM($Ia,I)JHzc

d

(ha)
3 + 3

Hti = Gbh(@@a)H$. + Gbb(@b,$a)Hza + Gbb($b,$b)H.$b + Gbb(@,@b)Hzb

* z

+ Gbb(@b,&)I& + Gtd$b,Oc)IIzc (llb)
= *

Hzc = ~(&,I$JHo. + Ch(Oc,Oa)FIza + Gbb(@c,$b)H$b + Gid@c,@)ELb
3

* z

+ GM(I$.,$.)Ho. + GIJ@.,I$c)Hz. (Ilc)

S - PARAMETERS

These relationships can be used to find the s-parameters of the 3D
modetfed dewce. The solutions for the H-field components are

2

1
Ho, =

D3P
o (%b?’ ~:) ;.

o -E, (T& + ~c)
(12a)

(T& + ~a) 2 NC

Hob = ~
D3P

%, o

T& o (T’&: Q

(I& + La) E, 2 ’12b )

HOC = & ‘& (~b + Lb) o

Ea G:b o
(12C)

where the H - field system determinant is

(Tm + ~J ~b ~c

D3P = G, (~b + <,) I&

~a -E, (mc + cc)
(13)

A typicat group of T elements may look like

~b = - G~h(ab)M., + G~(bb)M.b - G&(cb)M,C
(14b)

@W = - G~h(ac)M~ + G~(bc)M,b - G~(cc)M~.
(14C)

where

M
G;h(bb) -1 G;h(tx)~.

G;h(cb) Gfih(ce)-1

Mab =
G&(ab) G~h(ac)

G;h(cb) G;h(cc) -

M= =
G~h(ab) @&(tiC)

G;h(bb) -1 G:h(be)

(15a)

(15b)

(15C)
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Once the perimeter fields have been determined, it is a simple
matter to apply the prescription employed in the 2D model, hereto the 3D
s - parameter cafcrrfation. The three s - parameters are then

Sll = 1 - {aHo,
(16a)

S21 = - &@$)b (16b)

S31 = - LcHo. (16c)

The counter - clockwise tabellirtg scheme of the ports is shown in Fig. 2.

THREE - PORT SYMMETRIC 2D
CIRCULATORS

There are a tremendous amount of simplifications which result by
constraining the circulator to a symmernc disposition of the port locations.
We use the 2D theory as illustrative, Ieaving the details of the 3D
exposition for another place.

E. = GUH, + G,bHb + G.cfi (17a)
Eb = Gb, Ha + Gbb Hb + Gbc & (17b)
EC = GcaH, + Gcb Hb + Gcc Hc (17C)

In the general case for the 2D model, (17) holds for a three - port device.
Examination of the EH dyadic Green’s function element for n = N, the last

ring, afh’ws full advantage to be taken of the inherent three-fold symmetry.

G:$m( R, @ R>@ = & ~ ~~-in$f ~in$

rl =-- (18)
Let us make this expression more transparent by defining the source

aximuthal location to be ‘$J = ‘$: and the field location to be (I = $i .

Furthermore, abbreviate

I
GA( R, 4s; R>@ ~.% = G( 4ri, $j)

&=+, (19)
On the right-hand-sideof (18), collect the azimuthalexponentsinto one
factor, while noting that the radial variation, here with r = R, is stored in

the pm-factor ~f = FN(R) . Then (18) becomes

G( @i, $j) = * ~ ~w ein(% - ‘k)

rr=.w (20)
Right away, we notice from (20) that the Green’s function only depends
ups the difference between the source and field Iccations. That is,

G( $i, @j) = G( % - +j) (21)
This does not mean, however, that G(@i, $ j ) = G($ j, $i ) In fact,

because the material is a nomeciprocaring medium, we know this can’t hold.
Certainly, circulating action would cease if this type of Green’s function
dyadic element symmetry existed. Another clue that this type of symmetry
doesn’t exist is seen by re-examining (20) again. Let us find the
G(4I j, $i) dyarfic element from (20) by switchlrrgazimuthalangles.

G( @j,@i) = * ~ ~& eirr($ k)

*=. .aa (22)
Now define a new summation index as n’= -n. Substituting this info (6)
yields

-co

G(~j, @i) = ~ ~ ~nN e-irr’(h -~,)

yl’=oa (23)
But because notation is arbitrary, change the n’ into tr for the index, and
recognize that the order of summation doesn’t matter, especially as the same
integers are used as in the ongmal G($i , 0 j ) Green’s function.

L). n=. - (24)

c }mparitrg this to the expression for G($i , Qj ) in (20) enables U<(

see that except for the pre-factor, the dyadic Green’s function formulas arc

identicrd. It is tfris pre-factor, nevertheless, which is atl important here and
. -7m

maintains the device non-reciprocity! Y- nN is not equal to ‘YnN , or

?-% # %% (25)
Because of the afl imps-farrt relationship in (25),

G( @j, $J # G( @i, 4rj) (26)
is true and we are assured of our non-reciprocity.

However, property (211) and the symmetric arrgubmdistribution of
the port locations will reduce the number of actual Green’s function
elements reqrrircd to & calculated. Note tfrat the notation

Gij = G( @i, oj) (27)
is used in (17). Thus, by evaluating the Green’s dyadic for +i = $ j , the

self - terms, it is found that

G( $i, Qi) = & ~ ??M

*=. - (28)
At] aetf-term Green’s function dyartic elements are equaf, and we denote this
fact by assigning

G,=& ~ ~&
~=. - (29)

Equation (28) obviously also means that

G( t)i, @i) = G( @j, @j) (30)
For the off - diagonal Green’s function dyadic elements, it is found

that the number of unique telms is less than the total number of off -
diagonal elements. Denote the total number of radially located ports as
NTO Then the total number of diagonal elements is NT, diag = NTm

, but dre number of unique diagonal elements is one by the arguments in the
previous paragraph. The totrd number of off - diagonal elements is NT, off

- diag = (NTrp )2 - NTq , but the number of unique diagonal elements

Wi$ for an even number ofis considerably less, Nunique, off - diag =

@w - 1 for an odd number of ports.ports and Nunique, off- diag =
A device with three ports would have Nu, 0. d = 2< NT, off. diag = 6.

The savings for farger NTW rqpidty goes Up because of the quadratic term.
The determinant of the system to solve for the azimuthal ~ -

fields also displays all the individual Green’s function dyadic elements.
(How the G entries of the 21D theory go over into T entries of the 3D
theory is discussed in [5].)

(Gu + ~:~ GStr G,c

Dp = G,, (G~b + &,) G~=

G Ca % (G. + cc) (ql)

Let us define

A+ij = ()~ - $j (32)
Recognizing that a right-handed system with (r, $ ) or (x, y) in the plane
of the paper requires counter - clockwise labeled ports ( i.e., i = a, b, c or i
= 1,2, 3) to have progressively more positive valued azimuthal angles, if
the input port angle is set to O radians, then

~Zi=O;~~=2K/3;~C=4X/3 (33)

In order to see that there are only two unique dyadic Green’s function

elements requiring calculation, it is best to begin to evaluate the particular
off - diagonat terms in (31). It will become apparent what the trend is once
this examination process is started. By (20), (27), and (32),

n=. cu (34)

Moving down the first column,, exclrrdmg the diagonal, the ij = 21 or ba
element is

.

L,.
~=. - (35)

uvoking (33),

Ar$ba = ~b - $a = 2K/3 (36)
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and inserting this into (35) yields one of the unique dyadic Green’s function
elements.

G+ = & ~ ~& e’2i’”/s

Ir=. cc (37)

with Gba = G+ (38)
Moving down to the next element in the system matrix, the 31
element, we find the angrdar argument
A@Ca= @c - @a = 4rr/3 = 2sr - 2rr/3 (39)
and put it into

G~a = Gca(AI$CJ . & ~ ~& einM..

n=. - (40)
obtaining the other mrique dyarfic Green’s function element.

G_ = & ~ ~& e- zin”J3

rl =-co (41)

with G .a = G_ (42)

or ca
I

WI

Port 1

The dyadic Green’s function elements in the first row in’(3 1), are
found from those afready determined by noting that the azimuthal angle
differences have their signs reversed. Finally the cb ( and bc) element is
determined once it is noted that
&j)cb = @c - ~~ = 4rr/3 - 2R/3 = 2sr/3 (43)
By (34), this implies that the cb element is G. . Therefore, in summary
we have found that

Gaa = Gbb = Gcc = GS (44a)

Gca = G~ = Gab = G. (44b)
Gba = Gcb = Gac = G+ (44C)

Placing (32) into (19) gives

(G, + La) G. G+

DP = D3X3 = G+ (G, + (b) G.

I G. G+ (G, + cc) 1(45)

Now the three azimuthal H - fields can be simplified as follows:

I% = ; [(Gbb + Lb~Gcc + CC ) - (&f&]

“

= -+[G-(Q + Cc) - [G+]2]
P (46b)

1H. = & [GtmGcb - (Gbb+ ~b)Gca
D

= +’[[G.]2 - (G, + ~b)G+]
p (46c)

The s-parameters are found in the usual manner, from (16) above.
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METALLIC WALL LOSSES IN 3D MODEL

Rigorous incorporation of metal ground plane and microstrip
losses, something missing in the 2D approach, by the use of surface
impedances at the two conductor surfaces in question, can readily be
accomplished. By restricting the mixed recursive dyadic Green’s function
/mode - matching approach in [5] to the hmiting case of one horizontal
layer, thereby reducing the RGF/IvlM to a RGF, but retaining the added
consIm.int imposed to describe the impsdance boundary conditions

Z&J~m = E? (47)
found there, where m = layer index, which here would be set to m = IB or
lT, corresponding to the bottom or top part of the layer ( here just a single

region), losses may be added. Zm in [5] is used as a scakw, but may be

upgraded to a dyadic if desired.

CONCLUSIONS

It is expected that the derived dyadic Green’s function will be very
usefnf for the calculation of the 3D circulator fields and s-parameters because
of the previously found rapid convergence properties of the Bessel function
expressions previously used for the 2D cmculator and similarly employed
here.
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